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CYCLOTOMY AND DELTA UNITS 

ANDREW J. LAZARUS 

To the memory of Derrick Henry Lehmer 

ABSTRACT. In this paper we examine cyclic cubic, quartic, and quintic number 
fields of prime conductor p containing units that bear a special relationship 
to the classical Gaussian periods: qj - qj+1 + c is a unit for periods q_ and 
c E Z . 

1. INTRODUCTION 

In [10], Emma Lehmer discovered that certain well-known families of cubic 
and quartic fields contained translation units, where a translation unit 0 differs 
from a Gaussian period q by a rational integer. She then presented a family of 
quintic fields with the same property. Schoof and Washington [11] proved the 
converse of Lehmer's results for cubic fields and those quartic fields in which 
all units have norm + 1. 

Later D. H. and Emma Lehmer became interested in a cyclotomy where the 
Gaussian period q was replaced by the difference 5j of two periods sl - qj+1 . 
We will show that the fields with analogously-defined delta units are, in the cubic 
and quartic cases, the same as those already known. In Lehmer's quintic case 
the situation is more complicated because the ordering of the i's is not unique. 
The Lehmers observed without proof in [9] that only half of the primitive roots 
modp induce an ordering of the i's which give a delta unit in the quintic field 
of conductor p. We investigate this phenomenon. 

2. DEFINITIONS 

The cyclotomic classes of degree e and prime conductor p = ef + 1 are 

j ={gev+Jmodp:v0= ., f - 1}, j= , ...,e- 1, 

where g is any primitive root mod p. Here, Fo contains the eth-power 
residues, but the ordering of the other classes depends upon the choice of g. 
The Gaussian periods q are defined by 

(2.1) j = Lp j = O, ., e- l, 
vE, 
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where Cp = exp(27ri/p). The Lagrange resolvent T, sometimes called a Gauss 
sum, of a character x of order e (e.g., x is a complex-valued eth-power 
residue symbol) is 

p-i 

T(X) = E (j)p. 
j=O 

When X is taken to be the character defined by X(g) = Se, the well-known 
fundamental relations between Gaussian periods and Lagrange resolvents are 
given by 

e-1 e-1 

(2.2) T(xj) ZCjk?k, k=e-1 E4e-jkT(%ij) 
k=O j=0 

The delta cyclotomy is defined by 

(2.3) Jj = r1 - qj+l 

Here and throughout, indices of q and 6 should be understood mod e; when 
omitted, we mean to refer to any q or 6's. The different orderings of the ti's 
induce different values of the 6's. 

A unit 0 such that 0 = q + c for some c E Z is called a translation unit. If 
0 = 6 + c for some 6 defined by (2.3), then 0 is a generalized delta unit; if 
0 = 6 + 1, then 0 is a delta unit. 

3. CUBIC FIELDS 

Since the conductor p 1 mod 6, we have the well-known decomposition 

4p=L2+27M2, L-=lmod3, M>O. 

We may assume that g is chosen such that [5, Proposition 1] 

(3.1) g(p-1)/3 (L + 9M)/(L - 9M) mod p. 

Theorem 1. If K is a cyclic cubic field of prime conductor p, the following are 
equivalent: 

(i) M = 1, so K is a simplest cubic as defined by Shanks [12]. 
(ii) K has a translation unit. 

(iii) K has a delta unit. 
(iv) K has a generalized delta unit. 

Proof. (i) =*((ii) & (iii)): Shanks showed that the polynomials 

L -32 L?+3 ~ 2 
(3.2) Y3 _ 2 2 y 1 = 7(Y- 60) 

j=0 

generate the cubic fields with M = I. Emma Lehmer showed that i1 + (L - 1)/6 
is one of the units 0 [10]. The Lehmers showed in [9] that if M = 1, then 
6 - 1 is a unit. 

(iii) =J (iv): Trivial. 
(ii) => (i): This is shown in [ 1]. 
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(iv) =} (i): We can find the minimal polynomial IrrQ ( from the defini- 
tion (2.3) and the cyclotomic numbers of order 3. These are defined (for fixed 
g) by 

(h, k) = #{v E (Z/pZ)*: v E v + 1 E (g)} 

There are a number of well-known general formulas satisfied by the cyclotomic 
numbers (see, e.g., [1, 13]), including 

e-1 

11a 1a+k = f(k +)Z(h k)qla+h, 
(3.3) h=O 

(k) 1 k =0, f even, or k = e/2, f odd, 
O, otherwise. 

The cyclotomic numbers for e = 3 were determined in principle by Gauss. For 
g normalized by (3.1), we have [5, Proposition 1, misprint corrected] 

(00) = (p-8 + L)/9, 
(11) = (20) = (02) = (2p-4-L-9M)/18, 
(01) = (10) = (22) = (2p-4-L + 9M)/18, 

(12) = (21) = (p + 1 + L)/9. 

It is now a routine computation to find that 

IrrQ(5 = X3 -pX+Mp. 

We are therefore looking to solve 

(3.4) N,(6+c) = c3-p(c+M) =1. 

If c = -1 , it is immediate that the only solution is M = 1 and a norm of -1 . 
If c = 1, there are no units. First, p = 7 (where M = 1) can be checked as a 
special case. For p > 7, we have 1 - p + M < 1 + 2# - p < -l . This shows 
(iii) ? (i). 

Generalized delta units of norm +1 would be, from (3.4), solutions to 

(c- 1)(C2+c+ 1) = p(c+M). 

Since p is prime, it divides one of the factors on the left. If 

(3.5) dp=c2+c+ 1, 

then 

(3.6) d(c- 1) = c+M. 

Isolating M, gives 

(3.7) M=cd -c-d = (c- 1)(d - 1)-1. 

From (3.5) and p > 0 we have d > 0. Combining this with (3.7) and M > 0 
forces d > 2 and c > 2. When c = 2, hence p = 7 and M = 1, (3.6) is 
not satisfied. When c = 3, then d = 1, a contradiction. When c = 4, then 
p = 7 and d = 3, which gives M = -5, also a contradiction. Therefore, we 
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may assume c > 5. Starting from (3.5), we have 

dp<2c2=aL2?27M2 <8C2 2v/2c 5c dp< =~ L+ 
7M<d- ==~-M <3v/3d 

< 

Plugging this back into (3.6), we have 

14c 1 4c 
d(c- 1) < = d <5(1) < 2 

(since c > 5), a contradiction. 
Now suppose 

(3.8) dp = c - , 

so 

(3.9) M=d(c2+c+ 1)-c. 

If c = 1, we would have from (3.8) that d = 0 and then from (3.9), M = -1, 
impossible. Moreover, sgn d = sgn c by (3.8). When both are negative, 

M<d(c2+c 1) + dc = d(c + )2 , 

a contradiction. For c > 1, we must have that c > 8, since p > 7. Now 

p < dp < c < = M < y7M<. 

Combining this with (3.9) gives the inequality c2 + 1 < v/E, which never holds. 
Hence, there are no generalized delta units of norm + 1 . 

For the norm -1 case we are looking for solutions to 

(c+ l)(c2 -c+ 1) = p(c+M). 

Proceeding similarly to the positive-norm case, we first consider the possibility 
that dp = C2 c?+ 1 and M = cd -c+d = (c+ l)(d - 1) + I. As before, 
d > 0. If d = 1, we see that M = 1 is a solution to (3.4), regardless of c. 
From now on, assume d > l. If c < 2, then either p < 7 or M < 0, which 
are impossible. Assume c > 3. Then 

dp< 2C2 M 
2 vc 14c 14c 

dp<2c2=#M< =\g d(C+1)< 5=~d<9(+l<2, 
3 03d 5 9(c?l ) 

contradicting the assumption d > 2. 
The remaining case is dp = c + 1. We have M = d(c2 -_c + 1) - c. If 

c = -1, then d = 0 and M = 1, a solution to (3.4). If c < -1, then d < 0. 
Now 

M= d(c2 -c+ 1) -c < d(c2 -c+ 1) +dc < d(c2+ 1) < 0, 

a contradiction. It remains to check only c > 0. Immediately we get d > 0. 
But then, as with dp = c - 1 , we quickly get a contradiction: 

p < dp < 2c =X M < C cC2 - C +1 <c + VI-, 

and since c > 6, this, too, is impossible. o 
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We found all solutions to (3.4) during the proof of the theorem and summa- 
rize this result. 

Corollary 3.1. All generalized delta units have norm -1I. If M A 1, there are 
no generalized delta units. If M = 1, then ( - 1 is a unit. If, in addition, there 
exists c E Z such that p = C2 C + 1, then ? + c and 3 - (c - 1) are also 
units. 

Shanks [12] showed that when M = 1, the group generated by -1 and any 
two of the units 6j in (3.2) is the full unit group, and that Galois action on 
the units 0 is given by the map 0 -+ -(6 ? 1)-i . Since 1o is invariant under 
choice of g, we fix 00. 

Proposition 3.2. The ordering of the i/ induced by 00 = ro - (L + 1)/6 and 
Shanks's map 61+1 = -(Oj + 1)- coincides with the ordering obtained by (2.1) 
and (3.1). 
Proof We find that 

(iii + (L - 1)/6)(qo + (L + 5)/6) 

= 6(361q1ol +?6 1qL+30i +?6L1o+L2+4L-611o-5) 

= 316(4 qop + 1011o -2 oL+41lp-26q1-2 q1L+4 q2p+4172+?412L) 
= -1, 

expanding 1o1l by (3.3) and substituting in 12 = -1 - 1o- I and p = 

(L2 + 27)/4. Therefore, 61 = -(00 + 1)-' . Applying Galois action to both 
sides proves the general case. Ez 

Hasse [4] wrote elements of cyclic cubic fields as [x, y] , where 

[x, y] = x -yT(X)-yT(x) E K, 

X E7, QYE QK3], x(') ((L + -3M)/2)3 

He normalized Galois action so that [x, y] -` [x, Q3y]. (Warning: Hasse used 
L - -1 mod 3.) 

Proposition 3.3. Shanks's map is the inverse of Galois action as normalized by 
Hasse. 
Proof It is evident from the relations (2.2) that Hasse's map takes 

o= (1 T(x) + T(Z))/3 -* (1 ?+ 3T(X) + C2T(Z))/3 = 112, 

whereas the previous proposition shows that Shanks's map increments the index 
of 1. El 

Delta units and the choice of g. Fix, for the moment, the choice of g. In 
general, redefining the periods using a generator g' C FJ(g) yields ' j = . 
If g' C &9(l) then d' = -de-v. Therefore, in looking for delta units, j(g) 

and F(g) can be paired, so q(e)/2 essentially distinct delta polynomials must 
be considered. Therefore, when e < 5, the existence of delta units does not 
depend on the choice of g. For cubic fields, choosing a primitive root from the 
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other class of cubic nonresidues W2 changes the signs of 3, c, and the norm 
of the delta units. 

4. QUARTIC FIELDS 

Because we are interested in both cyclotomy and units, we will consider only 
the real fields, where p 1 mod 8. (The unit groups of the imaginary quartic 
fields are generated, up to torsion, by quadratic units.) Here we will use the 
normalization 

p=a2+b2, b_Omod4, b>O, a=-lmod4, 

and a primitive root g is chosen (per [7]) with 

(4.1) g = a/b mod p. 

Theorem 2. If K is a real cyclic quartic field of prime conductor p, the following 
are equivalent: 

(i) b = 4, so K is a simplest quartic field as defined by Gras [3]. 
(ii) K has a translation unit of norm +1. 

(iii) K has a delta unit. 
(iv) K has a generalized delta unit of norm +1. 

Proof. (i) = ((ii) & (iii)): Emma Lehmer showed that if b = 4, then - ? 
(a - 1)/4 is a root of the Gras quartic polynomial [3] 

(4.2) y4 - aY3 - 6y2 + aY + 1, 

so it is a unit of norm +1 [10, equation (4.5), corrected]. The Lehmers later 
showed that if b = 4, then either 3 + 1 or 3 - 1 is a unit [9], without deter- 
mining which sign held for a particular g. 

(iii) =}((iv) & (i)): Since Hasse's [4] normalization for quartic fields agrees 
with ours, we will use it to obtain IrrQ 35. The symbol [xo, xl, Yo, Yi] will 
represent the element of K given by 

[xo, XI, Yo, Yi] = '(Xo -x1/? + (yo + iyl)T(X) + (yo - iYi)T(Z)), 

where x is the quartic character belonging to K, viz., the quartic residue sym- 
bol (a4bi)4. (Condition (4.1) is equivalent to %(g) = i [7].) A general formula 
for the minimal polynomial of any element written in this way appears in [8] 
(or see Gras [3]). From (2.2), 

(50 = lo - q1 = [-1, -1, 1, 0] - [-1, 1, 0, -1] = [0, -2, 1, 1]. 

The minimal polynomial formula now gives 

IrrQ , = Y4 - p(Y + b )2, b' = b/4, 

whence 

(4.3) N(d+c) =c 4-p(b'-c)2 

Immediately we have c = 1 =} b = 4 and norm + 1; c = -1 is impossible. 
(ii) =} (i): Proven in [11]. 
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(iv) =} (i): From (4.3), units of norm + 1 will be solutions to 

(4.4) C~~4 _ I = (C + 1 )(C _ 1 )(C2 + 1 ('-C2. (4.4) c4-=c1(c1(21) =p(b'-c). 

There are no primes 1 mod 8 dividing the left side for c = ?2, ?3, and 
when c = ?4, the prime p = 17 divides the left side, but p = 17 implies 
bl = 1 and (4.4) is not satisfied. The cases c = ?1 have been handled above, 
so we may assume Icl > 5. 

Supposing, first, that dp = c + 1, we have b' = c + d(c - 1)(c2 ? 1). The 
minus root gives b' < 0, impossible. The plus root gives b' > IC13/2 + C > 

c13/2 /4. Then b > IC1312, so P > ICl3 . Since (b' - C)2 > 124lC13, we are 
reduced to the inequality C4 > 124C6, which is never true for [cl > 5. The 
case dp = c - 1 is virtually identical. The case dp = c2 + 1 is similar. Here, 
b' = c d (c2 1 ). Since b' C Z and c 1, we cannot have d = 1, so the 
minus root is impossible. Then 

b> f4(vl--- 1)1 c >[c =p > 64 c2 C> C4 -I=p(b' _ c)2 > 3c4, 
5 52 

which again has no solution. Ez 

We have also proved en passant: 

Corollary 4.1. A generalized delta unit of norm +1 is a delta unit with c = 1. 
If 0 = a + 1 is a delta unit, then b = 4, the plus sign holds, and N,6 = 1. 

Gras showed that Galois action on the roots 0 of (4.2) is given by 61+1 = 

(oj - 1 )/(0 + 1) ) 

Proposition 4.2. The ordering of the i/ induced by 00 = -ro + (a - 1)/4 and 
Gras's map 6j+1 = (Oj - 1)/(6j + 1) coincides with the ordering obtained by (2.1) 
and (4.1). Gras's map is the inverse of Galois action as normalized by Hasse. 
Proof. The identity 01 (00 + 1) = 00 - 1, which suffices to prove the first state- 
ment, was verified using the rule for multiplication in Hasse's basis [4, ?8(1)]. 
Hasse normalized Galois action so that [xo, X yo, YI -y, [xo, -xi, -yi, Yo], 
and the proof of the second statement is analogous to Proposition 3.3. o 

Remarks. (1) Choosing a generator from the other class of nonresidues F3 
changes the sign of all (5, hence c. 

(2) The only known example of a translation unit of norm -1 is q - 2 in 
the field of conductor 401 [1 1]. This field does not contain a generalized delta 
unit. The only generalized delta unit of norm -1 which we have found is 3 + 2 
in the field of conductor 17, which also contains delta units; no others can exist 
for c4 + 1 squarefree. 

5. QUINTIC FIELDS 

Dickson showed [2] that the conductor p 1_ mod 5 may be decomposed as 

16p = x2 + 5OU2 + 5OV2 + 125W2, 

subject to 
xw = v2 - 4uv _ u2 x --1 mod 5. 
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If (x, u, v, w) is one solution to this system, the others are (x, -v, u, -w), 
(x, v, -u, -w), and (x, -u, -v, w). If g is a primitive root modp, Katre 
and Rajwade proved in [6] that (x, u, v, w) can be defined unambiguously, 
given g, by the additional condition 

(5.1) Og(P-1)/5 - (a - 10b)/(a + 10b) modp, a = x2 - 125W2 

b = 2xu - xv - 25vw. 

Conversely, if a choice of (x, u, v, w) is fixed, primitive roots g in only 
one of the four classes of quintic nonresidues in Z/pZ will satisfy (5.1). The 
cyclotomic numbers for such g are given by 

(00)= (p - 14 + 3x)/25, 

(01) = (10) = (44) = (4p - 16 - 3x + 50v + 25w)/100, 

(02) = (20) = (33) = (4p - 16 - 3x + 50u - 25w)/100, 

(5.2) (03) = (30) = (22) = (4p - 16 - 3x - 50u - 25w)/100, 

(04) = (40) = (11) =(4p - 16 - 3x - 50v + 25w)/100, 

(12) = (21) = (34) = (43) = (14) = (41) = (2p + 2 + x - 25w)/50, 

(13) = (31) = (23) = (32) = (24) = (42) = (2p + 2 + x + 25w)/50. 

If we set 5j = qj - qj+lI we have, by direct computation, 

Irr,Q = A(Y) - Y5 _ Y3p + Y2vp 

(5.3) ?p ((3u +v) (u - v) +5w2) Y 
4 

p(u(u -_v)2 + (3 u - 4v)w2) ? 
~~~4 

In the quintic case, defining the periods '' with g' c K (g) effects the substi- 
tution (x, u, v, w) -* (x, -v, u, -w). Hence, the minimal polynomial of 

5j = qj - qj+l = q2j - 12(j+1) is given by 

A'(Y) = Y5 _ Y3p + Y2up 

(5.4) ? p ((3v - u) (v + u) + 5w2) Y 

p(v (v + u)2 + (3 v + 4 u) w2) 
4 

The quintic analogue to a simplest field was given by Emma Lehmer in [10]. 
For n C Z set 

u=n?1, v=n?2, w=() 

from which it follows that x = -(0)2(4n2 + IOn + 5) and 

(5.5) p = n4+5n3+ 15n2+25n+25. 
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Lehmer showed that 

(5.6) 0 = w? - (w - n2)/5 

is a translation unit up to sign. 
The normalization (5.1) of g reduces to 

g(P- )I5 -= (a - 1 Ob)/(a + l Ob) mod p, 

(5.7) a = 4(4 n4 + 30n2+ 25), b = -2 ()(2 n3+ 20 n + 25). 
5 2 

Theorem 3. Suppose p is of type (5.5) and g is chosen such that (5.7) holds. 
Then ( - 1 is a unit. If p l l, 

(i) ( - 1 is the only generalized delta unit, and 
(ii) 3' + c is never a unit. 

Proof. For such p, A(Y) reduces to 

Y5 _py3 +p(n + 2)y2 -pnY-p 

=1 +(Y- 1)(Y4+ y3 _ (p _ l)Y2+[p(n+ 1)+1]Y+p+ 1). 

Clearly, 3 - 1 is a unit of norm -1 . The equations N, (6-c) 1 =A(c)? 1 = 
0 may be considered as quintic polynomials in c. The lack of integer solutions 
to the unit equations may be proved by locating their irrational solutions be- 
tween consecutive integers. If n > 1, then A(c) + 1 has a root in each open 
interval (c, c + 1) for 

cE {-n2- 3n-6, -1, 0, n + 1, n2+ 2n + 3}. 

In each case, sgn(A(c) + 1) :A sgn(A(O + 1) + 1) . This accounts for all five roots, 
so there are no generalized delta units when n > 1. The polynomial A(c) - 1 
has an exact root at c = 1 instead of an irrational root in (0, 1); otherwise, 
its four irrational roots are located in the same intervals. Similar results hold 
for n < -3. The case n = -3 yields no solutions for c, which leaves only 
p = 11 . Hence (i). For the proof of (ii), replace A by A' and proceed in the 
same way. C1 

Corollary 5.1. Take x, u, v, w, p, a, and b as above and define the periods 
with an arbitrary primitive root g. If p = 1 1, all g define an ordering such that 
A(Y) has delta units. Otherwise, A(Y) has delta units if and only if g satisfies 

g(P 5_ (a -lb) mod p. 

These are the g in two (i.e., half) of the four nonresidue classes. 

Proof. This is immediate from the theorem and (5.1). a 

The field of conductor 11 is a special case. It is of type (5.5) with either 
n = -2 or n = -1 . (One can show that 11 is the only integer represented 
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nonuniquely by the polynomial (5.5).) The period polynomial for p = 11 is 

y5 + y4 -4 y3 -3 y2 + 3 Y ? 1, 

so the periods ?I are themselves units. Also q ? 1 and q + 2 are Galois- 
conjugate units (but not conjugate to q). Choosing to use n = -2, we have 
from (5.3) and (5.4) that ( - 1, +?2, ( - 3, (' ? 1 , and ('+ 2 are all units, 
no two conjugate. 

The converse of Theorem 3 is false. In the field of conductor 211 using 
(x, u, v, w) = (1 1,1 2, -5), a - 1 is a unit of norm -1. There is a gener- 
alized delta unit ( - 3 for p = 61 and (x, u, v , w) = (1, 1, 4, - 1). 

Schoof and Washington showed that Galois action on the quintic translation 
units (5.6) can be given by 

(5.8) 0 (n + 2) + n6 - 02 
l?+(n?+2)0 

When g satisfies (5.7), then (5.6) induces an ordering of the Oj. The method 
of Proposition 3.2 can be used to show that with this ordering the image of 
00 under (5.8) is 02 when w = 1, and 03 when w = -1. In [11], the 
map (5.8) was derived from (5.6) and the canonical ordering of the ij , but 
we have changed the normalization of (x, u, v, w) from [1 0] and [1 ]. The 
normalizations (3.1), (4.1), and (5.1) all follow naturally from Jacobi sums; 
they insure that the character defined by X (g) = Se coincides with the partic- 
ular eth-power residue symbol modulo p belonging to the field K [5]. Using 
Lehmer's u and v with normalized g makes the units translates of d' instead 
of 65. Changing u and v seemed the lesser evil. 

Remark. We were unable to find any infinite family of quintic fields with gen- 
eralized delta units containing either p = 61 or p = 21 1 . Furthermore, we 
were unable to make any progress on the conjecture of Schoof and Washing- 
ton in [11] that all quintic fields with translation units are of Emma Lehmer's 
form (5.5). 
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